Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

1-(3,4-Dimethoxybenzoyl)-3,5-dimethyl-1H-pyrazole

Aamer Saeed,^a* Amara Mumtaz^a and Ulrich Flörke^b

^aDepartment of Chemistry, Quaid-i-Azam University Islamabad, Pakistan, and ^bDepartment Chemie, Fakultät für Naturwissenschaften, Universität Paderborn, Warburgerstrasse 100, D-33098 Paderborn, Germany Correspondence e-mail: aamersaeed@yahoo.com

Received 15 August 2007; accepted 13 September 2007

Key indicators: single-crystal X-ray study; T = 120 K; mean σ (C–C) = 0.002 Å; R factor = 0.045; wR factor = 0.120; data-to-parameter ratio = 17.0.

The structure of the title compound, $C_{14}H_{16}N_2O_3$, shows the two aromatic planes twisted by an angle of 46.38 (4)°. The corresponding torsion angles are N-N-C(=0)-C of $-26.7 (2)^{\circ}$, and C-C-C(=0)-N of -28.2 (2) and 155.5 (1) Å. The crystal packing is determined by intermolecular C-H···O hydrogen bonds, forming endless chains along [001].

Related literature

For related literature, see: Ali et al. (2007); Mann et al. (1992); Perevalov et al. (2001); Saeed et al. (2007); Smith et al. (1965); Soliman & Darwishl (1983); Udupi et al. (1998).

Experimental

Crystal data

C14H16N2O3 $M_r = 260.29$ Triclinic, P1 a = 7.703 (2) Å b = 8.409 (2) Å c = 11.454 (3) Å $\alpha = 69.970(5)^{\circ}$ $\beta = 85.267 \ (5)^{\circ}$

 $\gamma = 66.655 \ (5)^{\circ}$ V = 638.8 (3) Å³ Z = 2Mo $K\alpha$ radiation $\mu = 0.10 \text{ mm}^{-1}$ T = 120 (2) K $0.44 \times 0.36 \times 0.25 \text{ mm}$

Data collection

Bruker SMART APEX

diffractometer Absorption correction: multi-scan (SADABS; Bruker, 2002) $T_{\min} = 0.959, T_{\max} = 0.976$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.045$	177 parameters
$wR(F^2) = 0.120$	H-atom parameters constrained
S = 0.97	$\Delta \rho_{\rm max} = 0.28 \text{ e} \text{ Å}^{-3}$
3011 reflections	$\Delta \rho_{\rm min} = -0.28 \text{ e } \text{\AA}^{-3}$

5678 measured reflections

 $R_{\rm int} = 0.053$

3011 independent reflections

2301 reflections with $I > 2\sigma(I)$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$\begin{array}{c} C8-H8A\cdots N2\\ C3-H3A\cdots O2^{i}\end{array}$	0.95	2.46	2.8948 (18)	108
	0.95	2.45	3.3496 (18)	157

Symmetry code: (i) x, y, z - 1.

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Bruker, 2002); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

AS gratefully acknowledges a research grant from the Quaid-i-Azam University Islamabad.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SG2191).

References

- Ali, M. A., Shahar Yar, M., Kumarz, M. & Pandianz, G. S. (2007). Nat. Prod. Res. 21, 575-579.
- Bruker (2002). SMART (Version 5.62), SAINT (Version 6.02), SHELXTL (Version 6.10) and SADABS (Version 2.03). Bruker AXS Inc., Madison, Wisconsin, USA.
- Mann, F., Chiment, F., Balasco, A., Cenicola, M. L., Amico, M. D., Parrilo, C., Rossi, F. & Marmo, E. (1992). Eur. J. Med. Chem. 27, 633-639.

Perevalov, S. G., Burgart, Y. V., Saloutin, V. I. & Chupakhin, O. N. (2001). Russ. Chem. Rev. 70, 921-925.

Saeed, A., Abbas, N. & Flörke, U. (2007). J. Braz. Chem. Soc. 18, 559-565.

Smith, D. L., Forist, A. A. & Dulin, W. E. (1965). J. Med. Chem. 8, 350-355. Soliman, S. A. & Darwishl, S. (1983). J. Med. Chem. 26, 1659-1663.

Udupi, R. H., Rao, S. N. & Bhat, A. A. (1998). Indian J. Heterocycl. Chem. 7, 217-221

supplementary materials

Acta Cryst. (2007). E63, o4122 [doi:10.1107/S1600536807044960]

1-(3,4-Dimethoxybenzoyl)-3,5-dimethyl-1*H*-pyrazole

A. Saeed, A. Mumtaz and U. Flörke

Comment

Pyrazoles represent an important class of five-membered nitrogen heterocycles exhibiting a wide range of biological activities (Mann *et al.*, 1992, Perevalov *et al.*, 2001). Several 1-substitued 3,5-dimethylpyrazole possess potent *in vivo* hypoglycemic activity (Soliman & Darwishl, 1983). The pyrazole ring is a major pharmacophoric substructure in a number of NSAIDs like phenylbutazone (Udupi *et al.*, 1998), oxyphenbutazone, celecoxib (Smith *et al.*, 1965) exhibiting anti-inflammatory, anti-pyretic and analgesic properties. Pyrazole derivatives being more active than the isoniazid against Mycobacterium tuberculosis have recently been reported (Ali *et al.*, 2007). Several thiourea and urea derivatives of 4-aminopyrazoles exhibit strong anticonvulsant and antituberculosis activity. In continuation of our interest in the synthesis of bioactive heterocycles (Saeed *et al.*, 2007) the synthesis of title compound was carried out by direct cyclocondensation of 3,4-dimethoxybenzyl hydrazide with 2,4-pentanedione.

Experimental

A mixture of 3,4-Dimethoxybenzyl hydrazide (1 mmol) and 2,4-pentanedione (1 mmol) was refluxed in dry ethanol for 5 h. On completion of the reaction, followed by TLC examination using hexane ethyl acetate (8:2) the solvent was evaporated and reaction mixture diluted with ethyl acetate and subjected directly to thick layer chromatography on silica gel. Recrystallization from ethyl acetate yielded colourless crystals, m.p.105–107°C. IR (KBr) cm⁻¹: 3103, 2958, 2930, 1680, 1601, 1584, 1472, 1373, 1275, 1170, 1022; ¹H NMR (CDCl₃) δ 7.2 (d, 8.4, 1H), 6.89 (dd, 1H), 6.7 (dd, 8.2, 3.4, 1H). 6.02 (s, 1H), 2.83 (s, 3H), 2.26 (s, 3H); EIMS m/e 260 [M^+], 165 (base).

Refinement

Hydrogen atoms were located in difference syntheses, refined at idealized positions riding on the C (C–H = 0.95–0.99 Å) atoms with isotropic displacement parameters $U_{iso}(H) = 1.2U(C_{eq})$ and 1.5(methyl-C). Methyl H atoms were refined on the basis of rigid groups allowed to rotate but not tip.

Figures

Fig. 1. Molecular structure of I. Displacement ellipsoids are drawn at the 50% probability level.

Fig. 2. Crystal packing of I viewed along [100] with hydrogen bond indicated as dashed lines. H-atoms not involved are omitted.

1-(3,4-Dimethoxybenzoyl)-3,5-dimethyl-1*H*-pyrazole

Crystal data

$C_{14}H_{16}N_2O_3$	Z = 2
$M_r = 260.29$	$F_{000} = 276$
Triclinic, <i>P</i> T	$D_{\rm x} = 1.353 {\rm ~Mg} {\rm ~m}^{-3}$
Hall symbol: -P 1	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
a = 7.703 (2) Å	Cell parameters from 719 reflections
b = 8.409 (2) Å	$\theta = 2.8 - 28.3^{\circ}$
c = 11.454 (3) Å	$\mu = 0.10 \text{ mm}^{-1}$
$\alpha = 69.970 \ (5)^{\circ}$	T = 120 (2) K
$\beta = 85.267 \ (5)^{\circ}$	Prism, colourless
$\gamma = 66.655 \ (5)^{\circ}$	$0.44 \times 0.36 \times 0.25 \text{ mm}$
$V = 638.8 (3) \text{ Å}^3$	

Data collection

Bruker SMART APEX diffractometer	3011 independent reflections
Radiation source: sealed tube	2301 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.053$
T = 120(2) K	$\theta_{\text{max}} = 27.9^{\circ}$
ϕ and ω scans	$\theta_{\min} = 1.9^{\circ}$
Absorption correction: multi-scan (SADABS; Bruker, 2002)	$h = -8 \rightarrow 10$
$T_{\min} = 0.959, T_{\max} = 0.976$	$k = -10 \rightarrow 11$
5678 measured reflections	$l = -15 \rightarrow 15$

Refinement

Refinement on F^2	Hydrogen site location: difference Fourier map
Least-squares matrix: full	H-atom parameters constrained
$R[F^2 > 2\sigma(F^2)] = 0.045$	$w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0704P)^{2}]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
$wR(F^2) = 0.120$	$(\Delta/\sigma)_{\rm max} < 0.001$
<i>S</i> = 0.97	$\Delta \rho_{max} = 0.28 \text{ e } \text{\AA}^{-3}$
3011 reflections	$\Delta \rho_{min} = -0.28 \text{ e } \text{\AA}^{-3}$
177 parameters	Extinction correction: SHELXL97, $Fc^*=kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$

Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.013 (2) Secondary atom site location: difference Fourier map

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit S are based on F^2 , conventional *R*-factors *R* are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2 \operatorname{sigma}(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
01	0.35654 (16)	0.20752 (14)	0.29144 (9)	0.0318 (3)
02	0.20118 (14)	0.44061 (12)	0.66198 (8)	0.0244 (2)
03	0.23018 (14)	0.75359 (13)	0.58447 (9)	0.0256 (2)
N1	0.26483 (17)	0.46669 (15)	0.12170 (10)	0.0232 (3)
N2	0.13919 (17)	0.64924 (15)	0.07561 (10)	0.0253 (3)
C1	0.3239 (2)	0.3922 (2)	0.02736 (12)	0.0256 (3)
C2	0.4637 (2)	0.2008 (2)	0.04724 (15)	0.0346 (4)
H2A	0.4951	0.1837	-0.0335	0.052*
H2B	0.4090	0.1134	0.0969	0.052*
H2C	0.5788	0.1794	0.0914	0.052*
C3	0.2365 (2)	0.5296 (2)	-0.07940 (13)	0.0298 (3)
H3A	0.2491	0.5231	-0.1610	0.036*
C4	0.1224 (2)	0.6848 (2)	-0.04548 (12)	0.0266 (3)
C5	-0.0039 (2)	0.8694 (2)	-0.12837 (14)	0.0369 (4)
H5A	-0.0778	0.9436	-0.0778	0.055*
H5B	-0.0900	0.8560	-0.1793	0.055*
H5C	0.0727	0.9305	-0.1828	0.055*
C6	0.30491 (19)	0.37422 (19)	0.25100 (12)	0.0235 (3)
C7	0.28444 (19)	0.48519 (18)	0.33182 (12)	0.0212 (3)
C8	0.30714 (19)	0.65048 (18)	0.29209 (12)	0.0231 (3)
H8A	0.3328	0.7009	0.2080	0.028*
C9	0.29251 (19)	0.74323 (18)	0.37492 (12)	0.0224 (3)
H9A	0.3094	0.8560	0.3473	0.027*
C10	0.25345 (18)	0.67149 (18)	0.49716 (12)	0.0203 (3)
C11	0.23435 (18)	0.50109 (18)	0.53931 (11)	0.0196 (3)
C12	0.25064 (18)	0.40966 (18)	0.45652 (12)	0.0202 (3)
H12A	0.2388	0.2944	0.4845	0.024*
C13	0.2007 (2)	0.26019 (18)	0.71111 (12)	0.0257 (3)
H13A	0.1006	0.2550	0.6668	0.039*
H13B	0.1775	0.2312	0.7999	0.039*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

supplementary materials

H13C	0.3238	0.1704	0.7004	0.039*
C14	0.2499 (2)	0.92627 (19)	0.54465 (14)	0.0310 (3)
H14A	0.3768	0.9098	0.5150	0.046*
H14B	0.2318	0.9719	0.6147	0.046*
H14C	0.1546	1.0153	0.4770	0.046*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0463 (7)	0.0205 (5)	0.0244 (5)	-0.0079 (5)	0.0000 (5)	-0.0083 (4)
02	0.0340 (6)	0.0219 (5)	0.0192 (4)	-0.0116 (4)	0.0047 (4)	-0.0092 (4)
03	0.0336 (6)	0.0208 (5)	0.0259 (5)	-0.0104 (4)	0.0020 (4)	-0.0124 (4)
N1	0.0281 (6)	0.0206 (6)	0.0195 (5)	-0.0067 (5)	0.0024 (5)	-0.0089 (5)
N2	0.0275 (6)	0.0210 (6)	0.0224 (6)	-0.0051 (5)	-0.0014 (5)	-0.0059 (5)
C1	0.0318 (8)	0.0292 (8)	0.0238 (7)	-0.0159 (6)	0.0067 (6)	-0.0147 (6)
C2	0.0410 (9)	0.0303 (8)	0.0354 (8)	-0.0124 (7)	0.0123 (7)	-0.0188 (7)
C3	0.0404 (9)	0.0343 (8)	0.0219 (7)	-0.0199 (7)	0.0044 (6)	-0.0127 (6)
C4	0.0308 (8)	0.0277 (8)	0.0228 (7)	-0.0143 (6)	-0.0008 (6)	-0.0065 (6)
C5	0.0416 (9)	0.0335 (9)	0.0284 (8)	-0.0130 (7)	-0.0082 (7)	-0.0018 (7)
C6	0.0251 (7)	0.0228 (7)	0.0209 (6)	-0.0069 (6)	0.0019 (5)	-0.0084 (6)
C7	0.0205 (6)	0.0205 (7)	0.0203 (6)	-0.0041 (5)	-0.0013 (5)	-0.0082 (5)
C8	0.0229 (7)	0.0244 (7)	0.0182 (6)	-0.0074 (6)	0.0005 (5)	-0.0049 (5)
C9	0.0222 (7)	0.0181 (6)	0.0248 (7)	-0.0073 (5)	-0.0012 (5)	-0.0050 (5)
C10	0.0183 (6)	0.0187 (6)	0.0230 (6)	-0.0039 (5)	-0.0031 (5)	-0.0091 (5)
C11	0.0177 (6)	0.0191 (6)	0.0183 (6)	-0.0036 (5)	-0.0006 (5)	-0.0056 (5)
C12	0.0203 (6)	0.0166 (6)	0.0219 (6)	-0.0047 (5)	-0.0006 (5)	-0.0068 (5)
C13	0.0337 (8)	0.0201 (7)	0.0211 (6)	-0.0099 (6)	0.0047 (6)	-0.0059 (5)
C14	0.0365 (8)	0.0219 (7)	0.0386 (8)	-0.0114 (6)	0.0007 (7)	-0.0148 (6)

Geometric parameters (Å, °)

1.2171 (17)	С5—Н5В	0.9800
1.3610 (15)	С5—Н5С	0.9800
1.4274 (16)	C6—C7	1.4844 (18)
1.3616 (15)	С7—С8	1.3841 (19)
1.4314 (16)	C7—C12	1.3998 (18)
1.3869 (16)	C8—C9	1.3931 (18)
1.3870 (16)	C8—H8A	0.9500
1.4106 (17)	C9—C10	1.3823 (18)
1.3209 (17)	С9—Н9А	0.9500
1.355 (2)	C10-C11	1.4105 (18)
1.489 (2)	C11—C12	1.3818 (17)
0.9800	C12—H12A	0.9500
0.9800	C13—H13A	0.9800
0.9800	C13—H13B	0.9800
1.418 (2)	C13—H13C	0.9800
0.9500	C14—H14A	0.9800
1.484 (2)	C14—H14B	0.9800
0.9800	C14—H14C	0.9800
	1.2171 (17) 1.3610 (15) 1.4274 (16) 1.3616 (15) 1.4314 (16) 1.3869 (16) 1.3870 (16) 1.4106 (17) 1.3209 (17) 1.355 (2) 1.489 (2) 0.9800 0.9800 1.418 (2) 0.9500 1.484 (2) 0.9800	1.2171(17) $C5-H5B$ $1.3610(15)$ $C5-H5C$ $1.4274(16)$ $C6-C7$ $1.3616(15)$ $C7-C8$ $1.4314(16)$ $C7-C12$ $1.3869(16)$ $C8-C9$ $1.3870(16)$ $C8-H8A$ $1.4106(17)$ $C9-C10$ $1.3209(17)$ $C9-H9A$ $1.355(2)$ $C10-C11$ $1.489(2)$ $C12-H12A$ 0.9800 $C13-H13B$ $1.418(2)$ $C13-H13C$ 0.9500 $C14-H14B$ 0.9800 $C14-H14B$

C11—O2—C13	116.84 (9)	C8—C7—C12	119.57 (12)
C10—O3—C14	116.39 (10)	C8—C7—C6	123.72 (12)
N2—N1—C1	111.43 (11)	C12—C7—C6	116.61 (12)
N2—N1—C6	120.77 (10)	C7—C8—C9	120.30 (12)
C1—N1—C6	127.52 (12)	С7—С8—Н8А	119.9
C4—N2—N1	104.43 (11)	С9—С8—Н8А	119.9
C3—C1—N1	105.93 (13)	C10—C9—C8	120.15 (12)
C3—C1—C2	130.03 (13)	С10—С9—Н9А	119.9
N1—C1—C2	123.97 (13)	С8—С9—Н9А	119.9
C1—C2—H2A	109.5	O3—C10—C9	124.91 (12)
C1—C2—H2B	109.5	O3—C10—C11	115.09 (11)
H2A—C2—H2B	109.5	C9—C10—C11	120.00 (11)
C1—C2—H2C	109.5	02—C11—C12	125.47 (12)
H2A - C2 - H2C	109.5	02-C11-C10	115.23 (11)
H^2B — C^2 — H^2C	109.5	C12-C11-C10	119 30 (11)
C1 - C3 - C4	106 59 (12)	$C_{11} - C_{12} - C_{7}$	120.64 (12)
C1 - C3 - H3A	126.7	C11 - C12 - H12A	119.7
C4-C3-H3A	126.7	C7-C12-H12A	119.7
$N_2 - C_4 - C_3$	111 61 (13)	Ω^2 Ω^2 Π^2	109.5
$N_2 = C_4 = C_5$	120.63 (13)	$O_2 = C_{13} = H_{13}B$	109.5
$1\sqrt{2}$	120.03(13) 127.76(13)	H13A C13 H13B	109.5
C_{4} C_{5} H_{5}	127.70 (13)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	109.5
$C_4 = C_5 = H_5 R$	109.5		109.5
	109.5	H13A-C13-H13C	109.5
пза—Сэ—пзв	109.5		109.5
С4—С5—Н5С	109.5	03	109.5
H5A—C5—H5C	109.5	03-014-HI4B	109.5
H5B-C5-H5C	109.5	H14A—C14—H14B	109.5
OI—C6—NI	118.94 (12)	03—C14—H14C	109.5
01	122.82 (12)	H14A—C14—H14C	109.5
N1—C6—C7	118.23 (12)	H14B—C14—H14C	109.5
C1—N1—N2—C4	0.04 (15)	N1—C6—C7—C12	155.47 (12)
C6—N1—N2—C4	-174.31 (12)	C12—C7—C8—C9	-1.3 (2)
N2—N1—C1—C3	0.66 (15)	C6—C7—C8—C9	-177.61 (12)
C6—N1—C1—C3	174.54 (12)	C7—C8—C9—C10	-0.6 (2)
N2—N1—C1—C2	177.94 (12)	C14—O3—C10—C9	-0.54 (19)
C6—N1—C1—C2	-8.2 (2)	C14—O3—C10—C11	179.64 (11)
N1—C1—C3—C4	-1.04 (16)	C8—C9—C10—O3	-177.77 (12)
C2—C1—C3—C4	-178.10 (14)	C8—C9—C10—C11	2.0 (2)
N1—N2—C4—C3	-0.72 (15)	C13—O2—C11—C12	6.10 (19)
N1—N2—C4—C5	179.43 (12)	C13—O2—C11—C10	-173.65 (11)
C1—C3—C4—N2	1.15 (17)	O3-C10-C11-O2	-1.92 (17)
C1—C3—C4—C5	-179.01 (14)	C9—C10—C11—O2	178.25 (12)
N2—N1—C6—O1	154.03 (13)	O3—C10—C11—C12	178.31 (11)
C1—N1—C6—O1	-19.3 (2)	C9—C10—C11—C12	-1.52 (19)
N2—N1—C6—C7	-26.76 (18)	O2—C11—C12—C7	179.82 (12)
C1—N1—C6—C7	159.88 (13)	C10-C11-C12-C7	-0.4 (2)
O1—C6—C7—C8	151.01 (14)	C8—C7—C12—C11	1.9 (2)
N1—C6—C7—C8	-28.17 (19)	C6—C7—C12—C11	178.39 (12)

O1—C6—C7—C12 –25.4 (2)

Hydrogen-bond geometry (Å, °)

D—H··· A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H···A
C8—H8A···N2	0.95	2.46	2.8948 (18)	108
C3—H3A···O2 ⁱ	0.95	2.45	3.3496 (18)	157
Symmetry codes: (i) $x, y, z=1$.				

